Semi-dualizing modules and related Gorenstein homological dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-dualizing Modules and Related Gorenstein Homological Dimensions

A semi-dualizing module over a commutative noetherian ringA is a finitely generated module C with RHomA(C,C) ≃ A in the derived category D(A). We show how each such module gives rise to three new homological dimensions which we call C–Gorenstein projective, C–Gorenstein injective, and C–Gorenstein flat dimension, and investigate the properties of these dimensions.

متن کامل

Gorenstein homological dimensions with respect to a semi-dualizing module over group rings

Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring  . It is shown that Gorenstein homological dimensions  of an  -RΓ module M with respect to a semi-dualizing module,  are equal over R and RΓ  .

متن کامل

Gorenstein flat and Gorenstein injective dimensions of simple modules

Let R be a right GF-closed ring with finite left and right Gorenstein global dimension. We prove that if I is an ideal of R such that R/I is a semi-simple ring, then the Gorensntein flat dimensnion of R/I as a right R-module and the Gorensntein injective dimensnnion of R/I as a left R-module are identical. In particular, we show that for a simple module S over a commutative Gorensntein ring R, ...

متن کامل

Gorenstein Homological Dimensions of Commutative Rings

The classical global and weak dimensions of rings play an important role in the theory of rings and have a great impact on homological and commutative algebra. In this paper, we define and study the Gorenstein homological dimensions of commutative rings (Gorenstein projective, injective, and flat dimensions of rings) which introduce a new theory similar to the one of the classical homological d...

متن کامل

Homological dimensions of complexes of R-modules

Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2006

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2005.07.010